Search results for "Spatial maps"

showing 4 items of 4 documents

ICA of full complex-valued fMRI data using phase information of spatial maps.

2015

Background ICA of complex-valued fMRI data is challenging because of the ambiguous and noisy nature of the phase. A typical solution is to remove noisy regions from fMRI data prior to ICA. However, it may be more optimal to carry out ICA of full complex-valued fMRI data, since any filtering or voxel-based processing may disrupt information that can be useful to ICA. New method We enable ICA of the full complex-valued fMRI data by utilizing phase information of estimated spatial maps (SMs). The SM phases are first adjusted to properly represent spatial phase changes of all voxels based on estimated time courses (TCs), and then these are used to segment the voxels into BOLD-related and unwant…

Spatial map phaseAdultComputer scienceIndependent component analysis (ICA)Neuroscience(all)computer.software_genreta3112030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineRobustness (computer science)VoxelImage Processing Computer-AssistedHumansComputer visionInfomaxPhase de-ambiguityta217ta113business.industryGeneral NeuroscienceComplex valuedBrainPattern recognitionMaximizationPhase positioningMagnetic Resonance ImagingComplex-valued fMRI dataPhase maskingSpatial mapsArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryPsychomotor PerformanceJournal of neuroscience methods
researchProduct

Electrical Coupling in Ensembles of Nonexcitable Cells: Modeling the Spatial Map of Single Cell Potentials

2015

We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also ana…

Membrane potentialChemistryCellNanotechnologyCell CommunicationHydrogen-Ion ConcentrationModels BiologicalIon ChannelsMembrane PotentialsQuantitative Biology::Cell BehaviorSurfaces Coatings and FilmsCoupling (electronics)medicine.anatomical_structureMembraneMaterials ChemistrymedicineSpatial mapsPhysical and Theoretical ChemistryExtracellular SpaceLipid bilayerBiological systemElectromagnetic PhenomenaIon channelBiophysical chemistryThe Journal of Physical Chemistry B
researchProduct

Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis

2013

Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering.…

FOS: Computer and information sciencesDiffusion (acoustics)Computer sciencediffusion mapMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Computational Engineering Finance and Science (cs.CE)Correlation03 medical and health sciencesTotal variation0302 clinical medicineStatistics - Machine LearningVoxel0202 electrical engineering electronic engineering information engineeringComputer Science - Computational Engineering Finance and ScienceCluster analysisdimensionality reductionta113spatial mapsbusiness.industryDimensionality reductionfunctional magnetic resonance imaging (fMRI)Pattern recognitionIndependent component analysisSpectral clusteringComputer Science - Learningindependent component analysista6131020201 artificial intelligence & image processingArtificial intelligenceDYNAMICAL-SYSTEMSbusinesscomputer030217 neurology & neurosurgeryclustering
researchProduct

Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition

2014

Canonical polyadic decomposition (CPD) may face a local optimal problem when analyzing multi-subject fMRI data with inter-subject variability. Beckmann and Smith proposed a tensor PICA approach that incorporated an independence constraint to the spatial modality by combining CPD with ICA, and alleviated the problem of inter-subject spatial map (SM) variability.This study extends tensor PICA to incorporate additional inter-subject time course (TC) variability and to connect CPD and ICA in a new way. Assuming multiple subjects share common TCs but with different time delays, we accommodate subject-dependent TC delays into the CP model based on the idea of shift-invariant CP (SCP). We use ICA …

Independent component analysis (ICA)Speech recognitionModels NeurologicalMotor ActivityNeuropsychological TestsInter-subject variabilityta3112TimeMulti-subject fMRI dataFingersHumansCanonical polyadic decomposition (CPD)Computer SimulationMotor activityInvariant (mathematics)ta217ta113Brain MappingShift-invariant CP (SCP)General NeuroscienceBrainMagnetic Resonance ImagingIndependent component analysisAuditory PerceptionTensor PICASpatial mapsPsychologyAlgorithmJournal of Neuroscience Methods
researchProduct